The de novo step is not necessary if a model genome or previous alignment is available (skip to Reference Assembly)

Choosing Individuals

  1. Pick your best 5–10 individuals (using du -hs or wc -l)

  2. Copy these individuals (just the RA files) into a new directory

Option 2 (Clean up reads one script/Indiv at a time)

  1. Modify file for quality control by throwing out seqs which do not meet threshold
    • Example perl QualityFilter.pl Dpup_007_RA.fastq > Dpupt_oo7_RA_QF.fastq
    • Do for all individuals you chose

QualityFilter.pl

  1. Find and shrink seqs to only unique ones while culling down file from 4 lines to 2 lines
    • perl HashSeqs.pl Dpup_007_RA_QF.fastq Dpup_007 > Dpup_007_RA_QF.hash
    • Do for all indivduals you chose

HashSeqs.pl

  1. Depending on coverage, you can look at the distribution and see the # of occurrences vs. # of sequences, expect a peak a some point followed by a dip and a recovery, with a spike early on (usually errors).
    • perl PrintHashHisto.pl Dpup_007_RA_QF.hash
    • Do for all individuals you chose
  2. May need more samples because don’t have many sequences within the distribution (low coverage)

Aligning Index to Itself

Before aligning, need to know parameters for alignment script. To count files in a dir:

  • ls -l *.hash | wc -l

Concatenate all the hash files cat *.hash > _.fasta where the underscore can be anything you want (like a name).

  • Make sure novoalign (a program) is in your bin or PATH or copied to this directory

Index

Create the novoindex index file (can run with 32G if need more memory):

  • screen See notes at start of this pipeline in case you are unfamiliar
  • srun -t 48:00:00 --mem=16G novoindex _.fa.idx _.fasta This is what you want it called and whatever your fasta file was named
  • Use smap to view task smap -c | grep your_user_name

Align

Now align index to itself, with following:

  • screen See notes at start of this pipeline in case you are unfamiliar
  • srun -t 48:00:00 --mem=16G novoalign -r E 48 -t 180 -d _.fa.idx -f _.fasta > _.novo
  • Output is a ".novo" file
  • Check size of file with du -hs * | sort -hr

ID loci

  1. Now identify loci:
    • screen See notes at start of this pipeline in case you are unfamiliar
    • srun -t 48:00:00 --mem=16G IdentifyLoci3.pl _.novo > _IDloci.fasta

IdentifyLoci3.pl


#!/usr/bin/perl

#######################################################################################
$max_alignment_score = 30;
$divergence_factor = 2;
$min_count = 0; #zero turns off to use min_flag instead
$min_flag = 0; #zero turns off to use min_count instead
$max_internal_alignments = 1;
$min_internal_alignments = 0;
$max_external_alignments = 10; # twice the df of the total number of samples (i.e. individuals) in the alignment
$min_external_alignments = 2; # approximately half of the df of the total number of samples (i.e. individuals) in the alignment
$max_total_alignments = 11; # max_ext_align + max_int_align
$min_total_alignments = 2; # min_ext_align + min_int_align
$min_alleles = 1;
$max_alleles = 4;
$min_samples_per_allele = 2;
$max_samples_per_allele = 6; # total number of samples (i.e. individuals) in the alignment
#######################################################################################

$file = $ARGV[0];

open(FILE, "<$file") or die;
while (<FILE>) {
        $line = $_;
        chomp($line);
        if (substr($line,0,1) eq ">") {
                @tabs = split(/\t/,$line);

                if ($tabs[9] eq "F") {

                        $query = $tabs[0];
                        ($query_lib, $query_ID, $query_count, $query_flag) = split(/\;/, $query);
                        $query_sequence = $tabs[2];

                        if ($query_used{$query} != 1 && $query_count >= $min_count && $query_flag >= $min_flag) {
                                $query_sequences{$query} = $query_sequence;
                                $sample_count{$query_sequence}++;
                                $query_used{$query} = 1;
                        }

                }               

        }
}
close(FILE);
%query_used = (); #clear this hash to clear memory


open(FILE, "<$file") or die;
while (<FILE>) {

        $line = $_;
        chomp($line);

        if (substr($line,0,1) eq ">") {
                @tabs = split(/\t/,$line);

                if ($tabs[9] eq "F") {

                        $query = $tabs[0];
                        ($query_lib, $query_ID, $query_count, $query_flag) = split(/\;/, $query); 
                        $index = $tabs[7]; 
                        ($index_lib, $index_ID, $index_count, $index_flag) = split(/\;/, $index);
                
                        $score = $tabs[5];
                        $change = $tabs[13];
                        $query_sequence = $tabs[2];
                        $index_sequence = $query_sequences{$index};

                        if ( ($query ne $index) && ( $sample_count{$query_sequence} >= $min_samples_per_allele && $sample_count{$query_sequence} <= $max_samples_per_allele ) && ( $sample_count{$index_sequence} >= $min_samples_per_allele && $sample_count{$index_sequence} <= $max_samples_per_allele ) ) {

                                if ($query_lib eq $index_lib) {         
                                                push(@{$internal_alignments{$query}}, $index);
                                                push(@{$internal_alignment_scores{$query}}, $score);
                                } else {
                                        if ($score == 0) {
                                                push(@{$perfect_external_alignments{$query}}, $index);
                                                push(@{$external_alignments{$query}}, $index);
                                                push(@{$external_alignment_scores{$query}}, $score);
                                        } else {
                                                push(@{$external_alignments{$query}}, $index);
                                                push(@{$external_alignment_scores{$query}}, $score);
                                        }
                                }

                        }       

                }

        }
}
close(FILE);

$locus = 1;
foreach $query (keys %query_sequences) {
        if ($printed{$query} != 1) {
        
                $bad = 0;
                @alleles = valid_alignments($query);
                $string1 = "@alleles";

                if ($string1 ne "") {
                        foreach (@alleles) {
                                @alleles2 = valid_alignments($_);
                                $string2 = "@alleles2";
                                if ($string1 ne $string2) { $bad = 1; }
                        }
                        if ($bad != 1) {
                                $print_string = ""; $print_count = 0;
                                foreach (@alleles) {
                                        if ($printed{$_} != 1) {
                                                @matches = ($_, @{$perfect_external_alignments{$_}});
                                                @matches = sort(@matches);

                                                $ID = "";
                                                foreach (@matches) { 
                                                        $ID = $ID . substr($_,1,length($_)) . "|"; 
                                                        $printed{$_} = 1;       
                                                }
                                                chop($ID);

                                                $plocus = sprintf("%06d", $locus); $plocus = "R" . $plocus;
                                                $print_string = $print_string . ">$plocus\{$ID\}\n";
                                                $print_string = $print_string . $query_sequences{$_} . "\n";
                                                $print_count++;
                                        }
                                }
                                if ($print_count >= $min_alleles && $print_count <= $max_alleles) {
                                        print $print_string;
                                        $locus++;
                                }
                        }
                }

        }
}

sub valid_alignments {
        $seq = $_[0];
        @int_aligns = ();
        @ext_aligns = ();
        @aligns = ();
        $flag = 0;

        ($seq_lib, $seq_ID, $blank, $seq_count) = split(/\;/, $seq);

        $x = 0;
        while ($x < scalar(@{$internal_alignments{$seq}})) {
                if ($internal_alignment_scores{$seq}[$x] <= $max_alignment_score) {
                        push(@int_aligns, $internal_alignments{$seq}[$x]);
                } elsif ($internal_alignment_scores{$seq}[$x] < $max_alignment_score*$divergence_factor) {
                        $flag = 1;
                }
                $x++;
        }
        if (scalar(@int_aligns) > $max_internal_alignments 
        || scalar(@int_aligns) < $min_internal_alignments) { $flag = 1; }

        $x = 0;
        while ($x < scalar(@{$external_alignments{$seq}})) {
                if ($external_alignment_scores{$seq}[$x] <= $max_alignment_score) {
                        push(@ext_aligns, $external_alignments{$seq}[$x]);
                } elsif ($external_alignment_scores{$seq}[$x] < $max_alignment_score*$divergence_factor) {
                        $flag = 1;
                }
                $x++;
        }
        if (scalar(@ext_aligns) > $max_external_alignments
        || scalar(@ext_aligns) < $min_external_alignments) { $flag = 1; }

        if (scalar(@int_aligns)+scalar(@ext_aligns) > $max_total_alignments
        || scalar(@int_aligns)+scalar(@ext_aligns) < $min_total_alignments) { $flag = 1; }

        if ($flag != 1) {
                @aligns = ($seq, @int_aligns, @ext_aligns);
                @aligns = sort(@aligns);
                return @aligns;
        }
}
  1. Once done counting loci, divide by 2 to get idea of how many loci we are dealing with, perl can only handle 8000 lines and 4000 loci chunks (*We will need to split _IDloci.fasta into 8000 line chunks*)
    • See how many polymorphic loci exist: perl SimplifyLoci2.pl _IDloci.fasta | grep "_2" | wc -l

Price (Extension)

  1. Now create PRICE directory and extendLoci directories inside PRICE
    • mkdir PRICE [in denovo folder]
    • mkdir extendLoci_1 (if 104,000 or less (aa:az)) 4000 loci x 26 letters (a-z) equals 104,000
    • mkdir extendLoci_2 (if >104,000 loci) add another directory for each 104000 you will need.
    • This is common when a six cutter is used because more loci will be generated.
  2. Make sure you have scripts required in the PRICE directory:
    • cp ~PATH/RecoverLocusSpecificReads.pl ./ (This must be in the PRICE directory)
    • getLoci.py
    • RecoverLocusSpecificReads.sh
    • extendLoci.sh
    • format_contigs.sh
    • cat.sh
    • select_loci.py (This must be in the PRICE directory)
  3. Cat all your forward and reverse, i.e., (R1 & R3, or RA and RB files into one file each and copy to PRICE:
    Depending on the size and number of seq, may be best to sbatch
    • cat *_RA.fastq > RABO_R1.fastq For example RABO is the species name and its all individuals sequenced
    • cat *_RB.fastq > RABO_R2.fastq
    • cp RABO* ./PRICE
  4. wc -l the ID Loci file and divide by 2 to see how many loci
    • ????? / 2 = ?????? LOCI using IDLoci2
  5. Strip names off of files to make a simplified version:
    • perl ~/scripts/SimplifyLoci2.pl _IDloci.fasta | grep --no-group-separator -A 1 "_1" > _IDloci_s.fasta
    • Then remove the _1 and make a simplified final version
    • sed 's/_1//' _IDloci_s.fasta > _IDloci_sf.fasta
  6. Split files into 8000 line chunks in the PRICE folder
    • split -l 8000 _IDloci_sf.fasta _IDloci_sf.fasta'_' This should give you the same file name plus aa,ab,ac,etc at the end of the file name
    • Double check with tail and wc -l to make sure each chunk is 8000 (except last one)
  7. Make a list of all the output files you just made (e.g., _IDloci_sf.fasta_aa, _IDloci_sf.fasta_ab)
    • ls *.fasta_a* > data_list
  8. To get an idea of how many loci you have, open the last file created by splitting, tail _IDloci_sf.fasta_a? and the last number is the number of loci you have (R??????) OR
    • you can use the number of loci you found in #4 (good to check both really)
  9. In PRICE create a Loci_aa file which is a list of R000001 to whatever locus number you have from #8 (up to R104000) and (if necessary) a Loci_bb which is R104001 to whatever locus number you have. You can use the Rscript (makelist.R) or use a text editor.
    • Make a list of each line number (i.e., R000001 >> ?), use Rscript makelist.R numbs<-seq(1:108279) Again this is assuming you have 108279 loci rabo<-sprintf("R%06d", numbs) write.table(rabo, quote=FALSE, col.names = FALSE, row.names = F)
    • Rscript makelist.R Should provide Loci_aa and Loci_bb files

Adjust Scripts

  1. Copy the following scripts into each extendLoci_* directory you created
    • RecoverLocusSpecificReads.sh
    • extendLoci.sh
    • format_contigs.sh
    • cat.sh
    • getLoci.py
  2. VIM (or another text editor) RecoverLocusSpecificReads.sh to reflect your ../data_list and two fastq files (../_R1.fastq and ../_R2.fastq). Also adjust $x -le ? to reflect the number of files in your data_list (so if you have aa->ag, ? = 7).
    • This builds shell scripts in the PRICE directory for each aa -> whatever that you have
  3. VIM extendLoci.sh and adjust as needed:
    • Change the number(?) in $x -le ? to whatever your total loci number is from #8 (max 104000) which covers the aa up to a? files in extendLoci_1.sh
  4. VIM format_contigs.sh and adjust as needed:
    • Change the number(?) in $x -le ? to whatever your total loci number is from #8 (max 104000) which covers the aa up to a? files in format_contigs.sh

Run scripts in each extendLoci directory IN ORDER from within that directory:

  1. Now run RecoverLocusSpecificReads.sh in extend_Loci_? directory
    • sbatch RecoverLocusSpecificReads.sh with Loci list (data_list)to create sh files in PRICE
  2. Then run these from the extendLoci_* directories, one at a time, in order.
    • sbatch extendLoci.sh ../Loci_aa
    • sbatch format_contigs.sh ../Loci_aa
    • sbatch cat.sh aa
    • Do the same for Loci_bb (which would be R104000->whatever) in extendLoci_2 if necessary
  3. To obtain the file you need (aa_contigs.fasta) which was output from cat.sh, and needs to be in PRICE, mv aa_contigs.fasta ../

Be careful not to “ls” the extendLoci_* directories as they are very full and may stall your command line

  1. Cat Loci_aa and Loci_bb together, if necessary: cat Loci_??_contigs.fasta > final_contigs.fasta

  2. Then select loci with 300 bp or more: python select_loci.py final_contigs.fasta 300
    • word count to see total loci wc -l final_contigs
    • The number of total loci is ??????/2 #4 or #8 above
    • The number of total loci with minimum length 300 is ??????/2 #18