### RANGE-WIDE GENETICS OF THE FOOTHILL YELLOW-LEGGED FROG (RANA BOYLII)

#### **Ryan Peek** (May 31, 2018)









**OVERVIEW** 



- Imperiled Freshwaters & Amphibian Declines
- Rana boylii: Range & Current Status
- Genetics Overview
- FYLF Rangewide Genetics: What we know

## IMPERILED FRESHWATERS

- Half the world's population lives within 20 km of a permanent river (Small and Cohen 1999)
- Projected mean extinction rates in freshwater organisms
   5x greater than terrestrial (Ricciardi and Rasmussen 1999)



Dudgeon et al. 2006

# AMPHIBIAN DECLINES

- Uniquely link aquatic and terrestrial ecosystems
- Have persisted through the last 4 mass extinctions
- Amphibian taxon are at greatest risk of extinction (*Stuart et al. 2004*)

#### Are we in the midst of the sixth mass extinction? A view from the world of amphibians

9

David B. Wake\*<sup>†</sup> and Vance T. Vredenburg\*<sup>‡</sup>



4



land cover, land use, and human population growth to generate a composite map showing the rates at which humans have been changing the world. When compared with the map of amphibian species richness, we found that many of the regions of the earth supporting the richest assemblages of amphibians are currently undergoing the highest

216

University of California Publications in Zoölogy

## RANA BOYLII

- First described by Baird
  1854, Zweifel 1955
- Zweifel described as distinct species (looked at 565 adults and many juveniles)
  - Max body size measured by was 73 mm (SVL)
  - Adults >=40 mm



## Rana boylii (Foothill yellow-legged Frog)

- Extant in CA and OR for ~5-8 million years (Macey et al. 2001)
- Obligate river breeding frog, uses wide range of habitat



## Rana boylii (Foothill yellow-legged Frog)

- Extant in CA and OR for ~5-8 million years (Macey et al. 2001)
- Obligate river breeding frog, uses wide range of habitat
- Has disappeared from over 50% of historical range (Davidson et al. 2002)



## Rana boylii: Hydrology & Breeding

- Strongly linked with temporal and regional hydrology
- Oviposition is strongly tied to local cues of receding flow rate and increasing water temperature



## SIERRA NEVADA GOLD

- Permanently changed the geomorphology/ecology of CA watersheds
- Estimated 8x more material excavated from Yuba/Bear/American than during construction of Panama Canal



## DAMMED

- Over 1,400 large dams (NID 2007)
- CA has more hydropower dams than any other state (Hall 2006)
- Residential energy demands expected to increase by 24% by 2035 (US EIA 2010)



# Genetics as a Tool for Conservation

- Many species lack data & are highly cryptic and inaccessible
- New tools to obtain data (MassiveParallelSeqencing & eDNA)

**a** Proportion of threatened amphibians



### TIMESCALES: GENETICS VS. RIVERSCAPES

- Genetic marker timescale can match riverscape scale
- Geomorphic "segment" scale is best match biologically and genetically



#### I. PHYLOGENY

- Macey et al 2001: Used 2013
  bp segment of mtDNA
- Looked at relationship of FYLF with 5 other Ranids
- Total informative sites: 401,
  642 variable sites



**Figure 1.** Single most parsimonious tree produced from analysis of the 2013 aligned (401 phylogenetically informative) positions. The tree has a length of 1240 steps. Bootstrap values are presented above branches and decay indices below branches. Note that the yellow-legged frogs, *R. boylii* and *R. muscosa*, do not form a monophyletic group.

#### I. PHYLOGENY

- Yuan et al 2016: 6 nuclear DNA, 3 mtDNA loci
- Similar pattern with FYLF at root

13

10



FIGURE 1. The BI tree derived from the combination of six nuDNA and three mtDNA loci. Branches without support symbols were strongly supported in all three phylogenetic analyses (BI, ML, and MP); we treated bootstrap proportions  $\geq$ 70% and BPPs  $\geq$ 95% as significantly supported (\*). Bootstrap proportions <70% and BPPs <95% were considered weakly supported (-). Support values are shown only for branches that were weakly supported in at least one of the three analyses, in which case support values are shown in order for BI, ML, and MP analyses. Colors of branches indicate the geographic distribution of extant taxa. Numbers on branches correspond to clades discussed in this study. Numbers with a black box correspond to the nine subgenera (plus *Rana sylvatica*) referred to in Supplementary Table S2, available on Dryad. Photographs depict the morphological variation of *Rana* across clades 1, 4, 5, 7, 8, 9, 11, 13, 15, 17, and 18. Frog illustrations are used with permission from David Hillis, Hui Zhao, Todd Pierson, Andreas Noellert, and Richard Sage.

#### II. RANGE-WIDE GENETICS

- Previous work identified structure among major watersheds (Lind et al. 2010)
- Largely the basis for current status...
- Little/no information on genetic health of populations within/among watersheds



#### II. RANGE-WIDE GENETICS UPDATED

- More robust data (more loci)
- Shaffer Lab (Melstad et al. 2018 in press)
  - Largely supporting original Lind et al. analysis
- Peek et al (in prep)
  - Finer resolution
  - Feather Watershed is Unique

bioRxiv preprint first posted online Sep. 10, 2017; doi: http://dx.doi.org/10.1101/186635. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

#### Population Genomics of the Foothill Yellow-Legged Frog (*Rana boylii*) and RADseq Parameter Choice for Large-Genome Organisms

Evan McCartney-Melstad<sup>1\*</sup>, Müge Gidiş<sup>2</sup>, H. Bradley Shaffer<sup>1</sup>

1: Department of Ecology and Evolutionary Biology, La Kretz Center for California Conservation Science, and Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA

10 2: Kütahya School of Health, Dumlupınar University, Kütahya, Turkey 11

12 \*Corresponding author: evanmelstad@ucla.edu

12

3

45

6

7

8

9



#### III. GENETIC DIVERSITY: ECOREGIONS



### III. GENETIC DIVERSITY: POPULATIONS



### FYLF GENETIC DIVERSITY SUMMARY

- North Coast appears to have robust populations and highest diversity
- Sierra Nevada is least diverse and populations appear most at risk
- South/Central coast exhibit similar pattern to Sierras

### IV. HYBRIDIZATION IN SIERRA NEVADA BETWEEN FYLF AND SYLF



## HYBRIDIZATION: FYLF & SYLF



- Rare hybridization detected between
   FYLF and SYLF in
   Bean Creek
- Only 2 of 200+ frogs were hybrids
- Appear to be FI hybrids

## HYBRIDIZATION: FYLF & SYLF

• Current modeling shows higher migration rates in Feather vs. other watersheds, rare event but more common in Feather



### Summary: Confluence of Conservation

- Important to assess adaptive capacity via genetic variation
- Inform future conservation, flow management, Forest plans
- Going to require managing regionally/locally to implement functionality for species persistence



### Thanks

Center for Watershed Sciences Collaborators: Mike Miller, Sarah Yarnell, Caren Goldberg, Mallory Bedwell, Brad Shaffer



Center for Watershed Sciences